TrAgLor - Turkish Agricultural Learning Objects Repository

Object Details

Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster Structures

Identifier : Catalog : URI
Entry : http://journal.magisz.org/index.php/jai/article/download/196/pdf_196


Title : English Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster Structures
Turkish K-Ortalamalar ve Bulanık C-Ortalamalar Algoritmalarının Farklı Küme Yapıları İçin Karşılaştırılması


Language : English English



Descriptions : English In this paper the K-means (KM) and the Fuzzy C-means (FCM) algorithms were compared for their computing performance and clustering accuracy on different shaped cluster structures which are regularly and irregularly scattered in two dimensional space. While the accuracy of the KM with single pass was lower than those of the FCM, the KM with multiple starts showed nearly the same clustering accuracy with the FCM. Moreover the KM with multiple starts was extremely superior to the FCM in computing time in all datasets analyzed. Therefore, when well separated cluster structures spreading with regular patterns do exist in datasets the KM with multiple starts was recommended for cluster analysis because of its comparable accuracy and runtime performances.
Turkish Bu makalede K-Ortalamalar (KO) ve Bulanık C-Ortalamalar (BCO) algoritmalarının düzenli ve düzensiz olarak iki boyutlu uzayda dağılış gösteren farklı şekillerde küme yapılarında hesaplama performansı ve kümeleme geçerliliği açısından karşılaştırılması yapılmıştır. Tek geçişli KO'nun kümeleme geçerliliği BCO'dan daha düşük olmasına karşın çoklu geçişle KO'nun BCO'nunkiyle yaklaşık olarak aynı düzeyde bulunmuştur. Ayruca çok geçişli KO'nun analiz edilen tüm veri setlerinde BCO'dan çok fazla yüksek saptanmıştır. Bu nedenle, düzenli dağılış gösteren veri setlerinde BCO'ya göre kümeleme geçerliliği ve hesaplama performansı açısından çok geçişli KO'nun kullanılması önerilmiştir.


Keywords : English fuzzy c-means
English k-means
English soft clustering
English hard clustering
Turkish bulanık c-ortalamalar
Turkish k-ortalamalar
Turkish yumuşak kümeleme
Turkish sert kümeleme


Coverage : World


Structure : Atomic


Aggregation Level : Level 1


Version : English JAI, 2015


Status : Final


Contribute : Role : Publisher
Date : 2015-10-12
name : Journal of Agricultural Informatics
e-mail : JAI-L@agr.unideb.hu
organization : Hungarian Association of Agricultural Informatics




Identifier : Catalog : URI
Entry : http://traglor.cu.edu.tr/common/object_xml.aspx?id=1948


Contribute : Role : Initiator
Date : 2015-10-15
name : Zeynel Cebeci
e-mail : cebeciz@gmail.com
organization : Çukurova Üniversitesi Ziraat Fakültesi Biyometri ve Genetik Anabilim Dalı


Metadata Schema : TrAgLor LOM AP


Language : Turkish Turkish
Format : Text


Requirements : Operating System: Multios
Min ver :
Max ver :
Browser: Any
Min ver :
Max ver :


Installation Remarks :


Other Platform Requirements :


Duration : Year : 0 Month : 0 Day : 0 Hour : 0 Minutes : 0


Size : 1363968 bytes


Location : http://journal.magisz.org/index.php/jai/article/download/196/pdf_196


Interactivity Type : Expositive


Learning Resource Type : Research


Interactivity Level : Low


Semantic Density : High


Intended End User Role : Other


Context : University Postgraduate


Typical Age Range : Turkish 18Ü


Difficulty Level : Difficult


Duration : Year : 0 Month : 0 Day : 2 Hour : 0 Minutes : 0


Description :


Cost : No


Copyright and Other Restrictions : Yes


Description : This resource is licensed under the license(CC-BY-NC-ND) Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported


Kind : IsPartOf


Resource : Catalog : URI
Entry : http://journal.magisz.org/index.php/jai/article/view/196


Description : English Journal of Agricultural Informatics (ISSN 2061-862X) 2015 Vol. 6, No. 3:13-23


Entity : name :
e-mail :
organization :


Date :


Description :


Purpose : Discipline


Source : English AGRICOLA


Entry : Mathematics and Statistics


Description :


Keywords : English cluster analysis
English data mining